Frontal Offset Crashworthiness Evaluation
Guidelines for Rating Structural Performance

In the Insurance Institute for Highway Safety’s offset crash tests, injury measures recorded on a 50th percentile male Hybrid III driver dummy are used as one indicator of crashworthiness performance. These measures are not the only indicators, however, because although high dummy injury measures recorded in the offset test mean some people in similar real-world crashes would sustain significant injuries, the converse is not true. Low dummy injury measures do not necessarily mean there is no risk of significant injury to people in similar crashes. This is because the forces experienced by people of different sizes from the test dummy, or seated in different positions, can be quite different, especially when there is significant collapse of/intrusion into the occupant compartment. Major deformation or intrusion into the compartment is a good predictor of injury risk for people in similar crashes, even when dummy injury measures are low. For this reason the Institute evaluates the structural integrity of the occupant compartment, or safety cage, during the offset test and uses this as an important additional indicator of crashworthiness performance. Specific measurements of intrusion into the occupant compartment are used to assess this aspect of performance.

Measurements of Safety Cage Deformation

The measurements used by the Institute represent the residual movement (precrash/postcrash difference) of interior structures in front of the driver dummy. The movement of seven points on the vehicle interior plus the closing of the distance between the A- and B-pillars are the foundations of the Institute’s structural ratings. Two of the interior measured points are located on the lower instrument panel, in front of the dummy’s knees; four points are in the footwell area, three across the toepan and one on the driver’s outboard footrest; the last measured point is on the brake pedal. The precrash and postcrash locations of these points are measured with respect to a coordinate system originating on the passenger side B-pillar. The measured movement of the interior seven points is adjusted to reflect movement toward the driver seat, which is represented by the locations of its attachment to the vehicle floor. Thus, movement of the driver seat with respect to the reference coordinate system is not reflected in evaluations of vehicle structure (this adjustment is not made for the A-to-B-pillar closure). A further adjustment may be made to the brake pedal intrusion in the event of pedals that “break away” to limit intrusion. If a brake pedal breaks away, or deforms, under reasonable force, the measured intrusion is taken from the deformed position.

Evaluation of Intrusion Measurements

The initial structural rating is based on comparison of intrusion measurements with rating guidelines (Figure 1). This rating may then be modified (downgraded) on the basis of additional observations about the structural integrity of the safety cage.

The X-Y-Z vector resultant movements of the toepan, footrest, and brake pedal points are used for comparison with the rating guidelines. If the X movement is forward (away from the driver seat), then only the Y-Z vector resultant movement is used. Only the rearward movement (X) of the instrument panel is compared with the guidelines. Figure 1 shows the ranges for these measurements and associated structural ratings. Vehicle models with all intrusion measures
Figure 1
Guidelines for Rating Occupant Compartment Intrusion (cm)

- **POOR**
- **MARGINAL**
- **ACCEPTABLE**
- **GOOD**

- Footrest
- Left toepan
- Center toepan
- Right toepan
- Brake pedal
- Left inst. panel
- Right inst. panel
- Door

Falling in the area labeled good will receive a good structural rating if no additional observations lead to a downgraded rating. Similarly, vehicle models with all intrusion measures falling into one of the other three zones shown in Figure 1 will receive an acceptable, marginal, or poor rating unless there are modifying observations.

When intrusion measurements fall in different rating bands, the final rating generally reflects the band with the most measures. However, the final rating typically will not be more than one rating level better than the worst measurement. For example, a vehicle with a poor measurement for the left instrument panel would not score better than marginal for structure, even if all other measured values were good. Where there are ties, with half the measurements in one band and half in another, the final rating typically will be that of the worst band. Intrusion measurements falling on a boundary value will be considered to fall in the band that represents the better rating.

Qualitative Observations Leading to Downgraded Structure Rating

Some patterns of deformation are less desirable regardless of intrusion measurements. For example, a footwell that collapses in a way that traps the dummy’s feet represents a greater injury risk than a footwell with similar intrusion measurements that does not trap the dummy’s feet. Another example of a potentially modifying observation involves intrusion into the safety cage of some component or structure not captured by the eight measurement points. If a modifying observation is made, then the structural rating will be lowered one level from the rating suggested by the intrusion measurements (e.g., from acceptable to marginal).